The Continuity Property Via I∞–OPEN SETS IN Ideal Topological Spaces

Amin Saif* and Khaleel. A. Alasly**

*Department of Mathematics, Faculty of Sciences, Taiz University, Taiz, Yemen

** Department of Mathematics, Faculty of Education, University of Saba Region, Mareb, Yemen

ABSTRACT

In this paper, we introduce introduces and investigates the notion of \mathcal{I}^{ω} -continuous functions via class of pre $-\mathcal{I}$ -open sets and we study cluster operator via this class to introduces and investigates the notion of \mathcal{I}^{ω} -continuous functions in ideal topological spaces. The relationships between the pervious functions and other known functions are introduced and studied.

AMS classification: Primary 54C08, 54C05.

Keywords

Open set; Metric spaces, continuous functions.

1. INTRODUCTION

The continuity property is one of the fundamental concepts in point-set topology. In 1982 Hdeib [6], introduced the notion of ω -open set and ω -continuous function as a weaker form of open set and continuous function, respectively, in topological spaces. A subset A of a space (X, τ) is called ω -open set if for each $x \in A$, there is an open set U_x containing x such that $U_x - A$ is a countable set. A function $f: (X, \tau) \to (Y, \rho)$ of a topological space (X, τ) into a topological space (Y, ρ) is called ω -continuous function if for each $x \in X$ and for an open set G in Y containing f(x), there is ω -open set U in X containing x such that $f(U) \subseteq G$. In 2009 Noiri and Noorani, [9], introduced the notion of $pre - \omega$ -open set as weak form for a ω -open sets. A subset A of a space X is called a pre – ω -open set if $A \subseteq Int_{\omega}(Cl(A)))$, where $Int_{\omega}(A)$ denotes the ω -interior operator of A in a space X. A function $f: (X, \tau) \rightarrow (Y, \rho)$ is $pre - \omega$ -continuous function if $f^{-1}(U)$ is $pre-\omega$ -open set in X for every open set U in Y.

For the study of ideal topological spaces, In 2009 Ekici and Noiri, [3], introduced the notion of decompositions of continuity via $pre - \mathcal{I}$ -open sets in ideal topological spaces. A subset A of ideal topological space (X, τ, \mathcal{I}) is called a $pre - \mathcal{I}$ -open set if $A \subseteq Int(Cl^*(A))$. The complement of a $pre - \mathcal{I}$ -open set is called a $pre - \mathcal{I}$ -closed set. A function $f : (X, \tau, \mathcal{I}) \longrightarrow Y$ of ideal topological space (X, τ, \mathcal{I}) into space Y is called $pre - \mathcal{I}$ -continuous function if $f^{-1}(G)$ is $pre - \mathcal{I}$ -open set in (X, τ, \mathcal{I}) for every open set G in Y. In [1], we introduced the notion of \mathcal{I}^{ω} -open set as a form stronger than ω -open set and $pre - \mathcal{I}$ -open set and weaker than $pre - \mathcal{I}$ -open set. A subset A of ideal topological space (X, τ, \mathcal{I}) is called $\mathcal{I}^{\omega}-open$ set if $A \subseteq Int_{\omega}(Cl^*(A))$. The complement of $\mathcal{I}^{\omega}-open$ set is called $\mathcal{I}^{\omega}-closed$ set. The set of all $\mathcal{I}^{\omega}-open$ sets in X denoted by $\mathcal{I}^{\omega}_O(X, \tau)$ and the set of all $\mathcal{I}^{\omega}-closed$ sets in X denoted by $\mathcal{I}^{\omega}_O(X, \tau)$, where $Int_{\omega}(A)$ denotes to ω -interior operator of A which is defined as the union of all ω -open subsets of X contained in A. $Cl_{\omega}(A)$ denotes to ω -closure operator of A which is defined as the intersection of all ω -closed subsets of X containing A.

In this paper, we introduce the continuity property via class of \mathcal{I}^{ω} -open sets in ideal topological spaces. This paper is organized as follows. In Section 2, we introduce introduces and investigates the notion of \mathcal{I}^{ω} -continuous functions via class of $pre - \mathcal{I}$ -open sets. In Section 3, we study ω -cluster operator via the class of \mathcal{I}^{ω} -open sets to introduces and investigates the notion of \mathcal{I}^{ω} -continuous functions in ideal topological spaces. The relationships between the pervious functions and other known functions are introduced and studied.

2. PRELIMINARIES

By Cl(A) and Int(A) we mean the closure set and the interior set of A in topological space (X, τ) , respectively.

An idea \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies the following conditions:

1- if
$$A \in \mathcal{I}$$
 and $B \in A$ then $B \in \mathcal{I}$,

2- if $A \in \mathcal{I}$ and $B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$.

Applications to various fields were further investigated by Jankovic and Hamlett [2], Dontchev [5] and Arenas et al [4]. An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X, and is denoted by (X, τ, \mathcal{I}) .

 $A^*(\mathcal{I}) = \{ x \in X : U \cap A \notin \mathcal{I} \text{ for each open neighborhood } Uofx \}$

is called the local function of a subset A of X with respect to \mathcal{I} and τ , [7]. When there is no chance for confusion $A^*(\mathcal{I})$ is denoted by A^* . For every ideal topological space (X, τ, \mathcal{I}) , there exists a topology τ^* finer than τ , generated by the base

$$\beta(\mathcal{I},\tau) = \{U - I : U \in \tau \text{ and } I \in \mathcal{I}\}$$

Observe additionally that $Cl^*(A) = A \cup A^*$, [8], defines a Kuratowski closure operator for τ^* . $Int^*(A)$ will denote the interior of A in (X, τ^*) . If (X, τ) is a topological space and \mathcal{I} is an ideal on X then the triple (X, τ, \mathcal{I}) will be called an *ideal topological space*. The following definitions and theorem are taken from [1].

THEOREM 2.1. Let (X, τ, \mathcal{I}) be an ideal topological space. If G_{λ} is \mathcal{I}^{ω} -open set for each $\lambda \in \Delta$ then $\cup_{\lambda \in \Delta} G_{\lambda}$ is \mathcal{I}^{ω} -open set, where Δ is an index set.

THEOREM 2.2. Let (X, τ, \mathcal{I}) be an ideal topological space. If G is an open set in (X, τ) and H is \mathcal{I}^{ω} -open set then $G \cap H$ is \mathcal{I}^{ω} -open set.

DEFINITION 2.3. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$.

(1) The \mathcal{I}^{ω} -closure operator of A is denoted by $_{\mathcal{I}^{\omega}}Cl(A)$ and defined by

$$\mathcal{I}^{\omega}Cl(A) = \cap \{ B \subseteq X : A \subseteq B \text{ and } B \in \mathcal{I}^{\omega}_{C}(X,\tau) \}$$

That is, $_{\mathcal{I}^{\omega}}Cl(A)$ is the intersection of all \mathcal{I}^{ω} -closed sets containing A.

The *I^ω*-interior operator of A is denoted by _{I^ω} Int(A) and defined by

$$\mathcal{I}^{\omega} Int(A) = \bigcup \{ B \subseteq X : B \subseteq A \text{ and } B \in \mathcal{I}^{\omega}_{O}(X, \tau) \}.$$

That is, $_{\mathcal{I}^{\omega}}Int(A)$ is the union of all \mathcal{I}^{ω} -open sets contained in A.

THEOREM 2.4. A subset A of an ideal topological space (X, τ, \mathcal{I}) is \mathcal{I}^{ω} -closed set if and only if $CL_{\omega}(Int^*(A)) \subseteq A$.

3. \mathcal{I}^{ω} -CONTINUOUS FUNCTIONS

DEFINITION 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space and (Y, ρ) be topological space Then the S-map $f : (X, \tau, \mathcal{I}) \to$ (Y, ρ) is called \mathcal{I}^{ω} -continuous function if $f^{-1}(V)$ is \mathcal{I}^{ω} -open set in (X, τ, \mathcal{I}) for every open set V in Y.

It is clear that every ω -continuous function is \mathcal{I}^{ω} -continuous function but the converse of this fact no need to be true.

EXAMPLE 3.2. Let $f:(\mathbb{R},\tau,\mathcal{I})\to(Y,\rho)$ be a function defined by

$$f(x) = \begin{cases} a, \ x \in \mathbb{R} - \{2\}\\ b, \ x = 2 \end{cases}$$

where $Y = \{a, b\},\$

$$\tau = \{\emptyset, \mathbb{R}\}, \ \mathcal{I} = \{\emptyset, \{1\}\}, \text{ and } \rho = \{\emptyset, Y, \{b\}\}.$$

The function f is \mathcal{I}^{ω} -continuous, since $f^{-1}(\{b\}) = \{2\}$ and $f^{-1}(Y) = \mathbb{R}$ are \mathcal{I}^{ω} -open sets in $(\mathbb{R}, \tau, \mathcal{I})$. The function f is not ω -continuous, since $f^{-1}(\{b\}) = \{2\}$ is not ω -open set.

It is clear that every pre $-\mathcal{I}$ -continuous function is \mathcal{I}^{ω} -continuous function but the converse of this fact no need to be true.

EXAMPLE 3.3. Let $f : (\mathbb{R}, \tau, \mathcal{I}) \to (Y, \rho)$ be a function defined by f(2) = a and f(1) = f(3) = b, where $Y = \{a, b\}$

$$\tau = \{\emptyset, \mathbb{R}\}, \ \mathcal{I} = \{\emptyset, \{1\}\}, \text{ and } \rho = \{\emptyset, Y, \{a\}\}.$$

The function f is \mathcal{I}^{ω} -continuous, since $f^{-1}(\{b\}) = \{1,3\}$ and $f^{-1}(Y) = \mathbb{R}$ are \mathcal{I}^{ω} -open sets in $(\mathbb{R}, \tau, \mathcal{I})$. The function f is not $pre - \mathcal{I}$ -continuous, since $f^{-1}(\{b\}) = \{1,3\}$ is not $pre - \mathcal{I}$ -open set.

It is clear that every $\mathcal{I}^\omega-\text{continuous}$ function is $pre-\omega-\text{continuous}$ function but the converse of this fact no need to be true.

EXAMPLE 3.4. Let $f : (\mathbb{R}, \tau, \mathcal{I}) \to (Y, \rho)$ be a function defined by f(2) = a and f(1) = b, where $Y = \{a, b\}$

$$\tau = \{\emptyset, \mathbb{R}\}, \ \mathcal{I} = \{\emptyset, \{1\}\}, \text{ and } \rho = \{\emptyset, Y, \{a\}\}.$$

The function f is $pre - \omega$ -continuous, since $f^{-1}(\{b\}) = \{1\}$ and $f^{-1}(Y) = \mathbb{R}$ are $pre - \omega$ -open sets in $(\mathbb{R}, \tau, \mathcal{I})$. The function f is not \mathcal{I}^{ω} -continuous, since $f^{-1}(\{b\}) = \{1\}$ is not \mathcal{I}^{ω} -open set.

THEOREM 3.5. A function $f: (X, \tau, \mathcal{I}) \to (Y, \rho)$ of an ideal topological space (X, τ, \mathcal{I}) into a space (Y, ρ) is \mathcal{I}^{ω} -continuous if and only if $f^{-1}(F)$ is \mathcal{I}^{ω} -closed set in (X, τ, \mathcal{I}) for every closed set F in Y.

THEOREM 3.6. If $f : (X, \tau, \mathcal{I}) \to (Y, \rho)$ is \mathcal{I}^{ω} -continuous function if and only if for each $x \in X$ and each open set U in Y with $f(x) \in U$, there exists \mathcal{I}^{ω} -open set V in (X, τ, \mathcal{I}) such that $x \in V$ and $f(V) \subseteq U$.

PROOF. Suppose that f is \mathcal{I}^{ω} -continuous function. Let $x \in X$ and U be any open set in Y containing f(x). Put $V = f^{-1}(U)$. Since f is a \mathcal{I}^{ω} -continuous then V is \mathcal{I}^{ω} -open set in (X, τ, \mathcal{I}) such that $x \in V$ and $f(V) \subseteq U$.

Conversely, Let U be any open set in Y. For each $x \in f^{-1}(U)$, $f(x) \in U$. Then by the hypothesis, there exists \mathcal{I}^{ω} -open set V_x in (X, τ, \mathcal{I}) such that $x \in V_x$ and $f(V_x) \subseteq U$. This implies, $V_x \subseteq f^{-1}(U)$ and so $f^{-1}(U) = \bigcup_{x \in f^{-1}(U)} V_x$. Hence by Theorem (2.1),

$$f^{-1}(U) = \bigcup_{x \in f^{-1}(U)} V_x$$

is \mathcal{I}^{ω} -open set in (X, τ, \mathcal{I}) . That is, f is \mathcal{I}^{ω} -continuous. \Box

THEOREM 3.7. A function $f : (X, \tau, \mathcal{I}) \to (Y, \rho)$ is \mathcal{I}^{ω} continuous of ideal topological space (X, τ, \mathcal{I}) into a space (Y, ρ) if and only if

$$f[_{\mathcal{I}^{\omega}}Cl(A)] \subseteq {}_{\rho}Cl(f(A))$$
 for all $A \subseteq X$.

PROOF. Let f be \mathcal{I}^{ω} -continuous function and A be any subset of X. Then ${}_{\rho}Cl(f(A))$ is a closed set in Y. Since f is \mathcal{I}^{ω} -continuous then by Theorem (3.5), $f^{-1}[{}_{\rho}Cl(f(A))]$ is \mathcal{I}^{ω} -closed set in (X, τ, \mathcal{I}) . That is,

$${}_{\mathcal{I}^{\omega}}Cl\big[f^{-1}[{}_{\rho}Cl(f(A))]\big] = f^{-1}[{}_{\rho}Cl(f(A))].$$

Since $f(A) \subseteq {}_{\rho}Cl(f(A))$ then $A \subseteq f^{-1}[{}_{\rho}Cl(f(A))]$. This implies,

$${}_{\mathcal{I}^{\omega}}Cl(A) \subseteq {}_{\mathcal{I}^{\omega}}Cl\big[f^{-1}[{}_{\rho}Cl(f(A))]\big] = f^{-1}[{}_{\rho}Cl(f(A))].$$

Hence $f[_{I^{\omega}}Cl(A)] \subseteq {}_{\rho}Cl(f(A))$. Conversely. let H be any closed set in Y, that is, ${}_{\rho}Cl(H) = H$.

Conversely, let *H* be any closed set in *Y*, that is, ${}_{\rho}Cl(H) = H$. Since $f^{-1}(H) \subseteq X$. Then by the hypothesis,

$$f[_{\mathcal{I}^{\omega}}Cl[f^{-1}(H)]] \subseteq {}_{\rho}Cl[f(f^{-1}(H))] \subseteq {}_{\rho}Cl(H) = H.$$

This implies, $_{\mathcal{I}^{\omega}}Cl[f^{-1}(H)] \subseteq f^{-1}(H)$. Hence $_{\mathcal{I}^{\omega}}Cl[f^{-1}(H)] = f^{-1}(H)$, that is, $f^{-1}(H)$ is \mathcal{I}^{ω} -closed set in (X, τ, \mathcal{I}) . Hence by Theorem (3.5), f is \mathcal{I}^{ω} -continuous. \Box

THEOREM 3.8. A function $f : (X, \tau, \mathcal{I}) \to (Y, \rho)$ is \mathcal{I}^{ω} continuous of ideal topological space (X, τ, \mathcal{I}) into a space (Y, ρ) if and only if

$$_{\mathcal{I}^{\omega}}Cl(f^{-1}(B)) \subseteq f^{-1}(_{\rho}Cl(B))$$
 for all $B \subseteq Y$.

PROOF. Let f be \mathcal{I}^{ω} -continuous function and B be any subset of Y. Then ${}_{\rho}Cl(B)$ is a closed set in Y. Since f is \mathcal{I}^{ω} -continuous then by Theorem (3.5), $f^{-1}[{}_{\rho}Cl(B)]$ is \mathcal{I}^{ω} -closed set in (X, τ, \mathcal{I}) . That is,

$$_{\mathcal{I}^{\omega}}Cl[f^{-1}[_{\rho}Cl(B)]] = f^{-1}[_{\rho}Cl(B)].$$

Since $B \subseteq {}_{\rho}Cl(B)$ then $f^{-1}(B) \subseteq f^{-1}[{}_{\rho}Cl(B)]$. This implies,

$$_{\mathcal{I}^{\omega}}Cl(f^{-1}(B)) \subseteq _{\mathcal{I}^{\omega}}Cl[f^{-1}[_{\rho}Cl(B)]] = f^{-1}[_{\rho}Cl(B)].$$

Hence $_{\mathcal{I}^{\omega}}Cl(f^{-1}(B)) \subseteq f^{-1}[_{\rho}Cl(B)].$ Conversely, let H be any closed set in Y, that is, $_{\rho}Cl(H) = H$. Since $H \subseteq Y$. Then by the hypothesis,

$$_{\mathcal{I}^{\omega}}Cl(f^{-1}(H)) \subseteq f^{-1}(_{\rho}Cl(H)) = f^{-1}(H)$$

This implies, $_{\mathcal{I}^{\omega}}Cl[f^{-1}(H)] \subseteq f^{-1}(H)$. Hence $_{\mathcal{I}^{\omega}}Cl[f^{-1}(H)] = f^{-1}(H)$, that is, $f^{-1}(H)$ is \mathcal{I}^{ω} -closed set in (X, τ, \mathcal{I}) . Hence by Theorem (3.5), $f^{-1}(H)$ is \mathcal{I}^{ω} -closed set in (X, τ, \mathcal{I}) . That is, f is \mathcal{I}^{ω} -continuous. \Box

THEOREM 3.9. A function $f : (X, \tau, \mathcal{I}) \to (Y, \rho)$ is \mathcal{I}^{ω} continuous of ideal topological space (X, τ, \mathcal{I}) into a space (Y, ρ) if and only if

$$f^{-1}({}_{\rho}Int(B)) \subseteq {}_{\mathcal{I}^{\omega}}Int[f^{-1}(B)]$$
 for all $B \subseteq Y$.

PROOF. Let f be \mathcal{I}^{ω} -continuous function and B be any subset of Y. Then $_{\rho}Int(B)$ is an open set in Y. Since f is \mathcal{I}^{ω} -continuous then $f^{-1}[_{\rho}Int(B)]$ is \mathcal{I}^{ω} -open set in (X, τ, \mathcal{I}) . That is,

$$_{\mathcal{I}^{\omega}}Int[f^{-1}[_{\rho}Int(B)]] = f^{-1}[_{\rho}Int(B)].$$

Since ${}_{\rho}Int(B) \subseteq B$ then $f^{-1}[{}_{\rho}Int(B)] \subseteq f^{-1}(B)$. This implies,

$$f^{-1}[_{\rho}Int(B)] = {}_{\mathcal{I}}\omega Int[f^{-1}[_{\rho}Int(B)]] \subseteq {}_{\mathcal{I}}\omega Int(f^{-1}(B)).$$

Hence $f^{-1}(\rho Int(B)) \subseteq {}_{\mathcal{I}^{\omega}} Int[f^{-1}(B)]$. Conversely, let U be any open set in Y, that is, $\rho Int(U) = U$. Since $U \subseteq Y$. Then by the hypothesis,

$$f^{-1}(U) = f^{-1}({}_{\rho}Int(U)) \subseteq {}_{\mathcal{I}^{\omega}}Int[f^{-1}(U)].$$

This implies, $f^{-1}(U) \subseteq \mathcal{I}^{\omega} Int[f^{-1}(U)]$. Hence $f^{-1}(U) = \mathcal{I}^{\omega} Int[f^{-1}(U)]$, that is, $f^{-1}(U)$ is \mathcal{I}^{ω} -open set in (X, τ, \mathcal{I}) . Hence f is \mathcal{I}^{ω} -continuous. \Box

DEFINITION 3.10. A function $f : (X, \tau, \mathcal{I}) \to (Y, \rho)$ of a ideal topological space (X, τ, \mathcal{I}) into a space (Y, ρ) is called a \mathcal{I}^{ω} -closed function if f(G) is a closed set in (Y, ρ) for every \mathcal{I}^{ω} -closed set G in (X, τ, \mathcal{I}) .

THEOREM 3.11. Let $f: (X, \tau, \mathcal{I}) \to (Y, \rho)$ and $h: (Y, \rho) \to (Z, \gamma)$ be two functions. Then $h \circ f$ is \mathcal{I}^{ω} -closed function if h is a closed function and f is \mathcal{I}^{ω} -closed function

PROOF. Let U be \mathcal{I}^{ω} -closed set in (X, τ, \mathcal{I}) . Since f is \mathcal{I}^{ω} -closed function then f(U) is a closed set in Y. Since h is closed function then $h[f(U)] = (h \circ f)(U)$ That is, $h \circ f$ is a \mathcal{I}^{ω} -closed function. \Box

THEOREM 3.12. A function $f : (X, \tau, \mathcal{I}) \to (Y, \rho)$ is a \mathcal{I}^{ω} -closed function if and only if ${}_{\rho}Cl[f(A)] \subseteq f[{}_{\mathcal{I}^{\omega}}Cl(A)]$ for all $A \subseteq X$.

PROOF. Suppose that f is \mathcal{I}^{ω} -closed function and A be any subset of X. Since $_{\mathcal{I}^{\omega}}Cl(A)$ is \mathcal{I}^{ω} -closed set in (X, τ, \mathcal{I}) and f is \mathcal{I}^{ω} -closed function then $f[_{\mathcal{I}^{\omega}}Cl(A)]$ is a closed set in Y. That is,

$$_{\rho}Cl|f[_{\mathcal{I}^{\omega}}Cl(A)]| = f[_{\mathcal{I}^{\omega}}Cl(A)].$$

Since $A \subseteq_{\mathcal{I}^{\omega}} Cl(A)$ then $f(A) \subseteq f[_{\mathcal{I}^{\omega}} Cl(A)]$. This implies,

$${}_{\rho}Cl[f(A))] \subseteq {}_{\rho}Cl[f[_{\mathcal{I}}\omega Cl(A)]] = f[_{\mathcal{I}}\omega Cl(A)]$$

Hence $_{\rho}Cl[f(A)] \subseteq f[_{\mathcal{I}^{\omega}}Cl(A)].$

Conversely, let F be any \mathcal{I}^{ω} -closed set in (X, τ, \mathcal{I}) , that is, $_{\mathcal{I}^{\omega}}Cl(F) = F$. Since $F \subseteq X$. Then by the hypothesis,

$$_{\rho}Cl[f(F)] \subseteq f[_{\rho}Cl(F)] = f(F).$$

This implies, ${}_{\rho}Cl[f(F)] \subseteq f(F)$. Hence ${}_{\rho}Cl[f(F)] = f(F)$, that is, f(F) is a closed set in Y. Hence f is \mathcal{I}^{ω} -closed function. \Box

4. REFERENCES

- [1] A. Saif and K. A. Alasly (2021), On \mathcal{I}^{ω} -open sets in ideal topological spaces, (Submitted).
- [2] D. Jankovic, and T. Hamlett, New topologies from old vian ideals, Amer. Math. Monthly, 97(4) (1990), 295-310.
- [3] E. Ekici and T. Noiri, On subsets and decompositions of continuity in ideal topological spaces, Arab. J. Sci. Eng. Sect. A Sci. 34(2009), 165-177.
- [4] F. Arenas, J. Dontchev and M. Puertas, Idealization of some weak separation axioms, Acta Math. Hungar., 89(1) (2000), 47-53.
- [5] J. Dontchev, Strong B-sets and another decomposition of continuity, Acta Math. Hungar., 75(3) (1997), 259-265.
- [6] H. Z. Hdeib, w-closed mappings, Revista Colombiana de Matematicas, 16 (1982), 65-78.
- [7] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, (1966).
- [8] R. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., Sect A, 20(1944), 51-61.
- [9] T. Noiri, A. Al-omari and M. Noorani, Weak forms of ωopen sets and decompositions of continuity, European Journal of Pure and Applied Mathematics 1, (2009), 73-84.